	Q.P.	Code: 18EC0403	R	8
	Dor			
1.87	NCE	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUI	3	
		(AUTONOMOUS)		
		B.Tech II Year I Semester Supplementary Examinations December-2021 SIGNALS & SYSTEMS		
,	г.	(Electronics and Communication Engineering)		60
	I Ime	PART-A	arks:	60
		(Answer all the Questions $5 \times 2 = 10$ Marks)		
1	a	Define a Signal. What is the relation between impulse, step, ramp, and parabolic signals?	L1	2M
	b	What are the Dirichlet's conditions? State them.	L1	2M
	c	What is anti-aliasing filter?	L1	2M
	d	State Parseval's energy theorem.	L1	2 M
	e	State initial value theorem and final value theorem of Laplace transform.	L1	2 M
		PART-B		
		(Answer all Five Units $5 \ge 10 = 50$ Marks)		
		UNIT-I		
2	a	Find which of the signals are causal or non-causal.	L2	5M
		(i) $x(t) = e^{2t} u(t-1)$ (ii) $x(t) = 3 \operatorname{sinc} 2t$ (iii) $x(n) = u(n+4) - u(n-2)$ (iv) $x(t) = u(-n)$		
	b	Find the even and odd components of the following signals	L2	5M
		(i) $x(t) = e^{j2t}$ (ii) $x(t) = (1+t2+t3) \cos^2 10t$ (iii) $x(n) = \{-3, 1, 2, -4, 2\}$ (iv) $x(n) = \{5, 4, 3, 2, 1\}$		
		OR		
3	a	Check whether the following system is (i) static or dynamic (ii) linear or non-linear	L4	5M
		(iii) causal or non- causal (iv) Time invariant or time variant		
		$d^{3}y(t)/dt^{3}+2d^{2}y(t)/dt^{2}+4 dy(t)/dt+3y^{2}(t)=x(t+1)$		
	b	Determine whether the following signals are energy signals or power signals.	L6	5 M
		Calculate their energy or power.		
		(i)x(t)= t (ii) sin ² $\omega_0 t$ (iii) x(t)= $e^{j[3t+(\pi/2)]}$ (iv) x(n)=(1/2)^n u(n)		
		UNIT-II		
4	a	State and prove the properties of Continuous time Fourier transform.	L2	5M
	b	Find the Fourier transform of (i) sin $\omega_0 t$ (ii) cos $\omega_0 t$.	L4	5M
		OR		
5	a	Find the Fourier Transform of the Signal (i) Triangular Pulse (ii) e ^{-a t}	L4	5M
	b	Find the Fourier transform of the following signals	L4	5M
		(i) $x(t)=e^{-3t}u(t)$ (ii) $x(t)=te^{-at}u(t)$ (iii) $x(t)=e^{-t}\sin 5t u(t)$ (iv) $x(t)=e^{-t}\cos 5t u(t)$		

Page 1 of 2

O.P. Code: 18EC0403

	Q.P.	Code: 18EC0403	R 1	8
6	0	UNIT-III		
0	a	Derive the transfer function and impulse response of an L11 system.	Lo	5 M
	b	Let the system function of an LTI system be $1/(j_{0}+2)$. What is the output of the	L4	5M
		system for an input $(0.8)^t$ u(t).		
		OR		
7	a	Find the Nyquist Rate and Nyquist Interval of the following signals.	L4	6M
		(i)x(t)=1+cos 2000 π t + sin 4000 π t (ii) x(t)=10 sin 40 π t cos 300 π t		
	b	A system produces an output of $y(t) = e^{-3t} u(t)$ for an input of $x(t) = e^{-5t} u(t)$.	L4	4M
		Determine the impulse response and frequency response of the system.		
		UNIT-IV		
8	a	State and prove the time convolution theorem with Fourier transforms?	L2	6M
	b	Verify Parseval's theorem for the energy signal $x(t)=e^{-4t}u(t)$.	L3	4M
		OR		
9	a	Derive the relation between convolution and correlation.	L6	5M
	b	Find the autocorrelation of the signal $x(t) = A \sin (\omega_0 t + \theta)$.	L4	5 M

UNIT-V

10	a	Find the Laplace transform of the signal $x(t) = e^{-at} u(t) - e^{-bt} u(-t)$ and find its ROC.	L4	5M
	b	Find the inverse Z-transform of X(z) given $X(z) = 1/(1-az^{-1})$, ROC; $z > a $	L4	5 M

OR

11	a	State and prove initial and final value theorems of Z-transform.	L2	5M
	b	Find the inverse z-transform of $X(z)=3z^{-1}/(1-z^{-1})(1-2z^{-1})$	L4	5M
		(a) If ROC; $ z >2$ (b) If ROC ; $ z <1$ (c) If ROC; $1< z <2$		

END